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A new statistical method called the phylogenetic regression is proposed that applies
multiple regression techniques to cross-species data. It allows continuous and
categorical variables to be tested for and controlled for. The new method is valid
despite the problem that phylogenetically close species tend to be similar, and is
designed to be used when information about the phylogeny is incomplete.
Information about the phylogeny of the species is assumed to be available in the form
of a working phylogeny, which contains multiple nodes representing ignorance about
the order of splitting of taxa. The non-independence between species is divided into
that due to recognized phylogeny, that is, to phylogenetic associations represented in
the working phylogeny; and that due to unrecognized phylogeny. The new method
uses one linear contrast for each higher node in the working phylogeny, thus applying
the ‘radiation principle’. For binary phylogenies the method is similar to an existing
method.

A criterion is suggested in the form of a simulation test for deciding on the
acceptability of proposed statistical methods for analysing cross-species data with a
continuous y-variable. This criterion is applied to the phylogenetic regression and to
some other methods. The phylogenetic regression passes this test; the other methods
tested fail it.

Arbitrary choices have to be made about the covariance structure of the error in
order to implement the method. It is argued that error results from omitted but
relevant variables, and the implications for those arbitrary choices are discussed. One
conclusion is that the dates of splits between taxa, even supplemented by rates of
neutral gene evolution, do not provide the ‘true’ covariance structure. A pragmatic
approach is adopted.

Several analytical results about the phylogenetic regression are given, without
proof, in a mathematical appendix.

A computer program has been written in GLIM to implement the phylogenetic
regression, and readers are informed how to obtain a copy.

1. INTRODUCTION

In this paper I present the phylogenetic regression, a new statistical method for analysing cross-
species data in a regression framework with a continuous y-variable. The new method supplies
the hypothesis testing facilities of multiple regression in a way that takes account of the special
difficulty associated with comparative data, namely non-independence of species. Arbitrary
combinations of continuous and categorical variables can be controlled for and tested for.
Section 2 establishes necessary preliminaries, then §3 develops the phylogenetic regression.
Section 4 proposes a criterion for the acceptability of any statistical regression method of
analysing comparative data with a continuous y-variable; §5 applies this criterion to the
phylogenetic regression and some other methods. Section 6 discusses an arbitrary choice that
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THE PHYLOGENETIC REGRESSION 121

has to be made in assigning lengths to path segments in a representation of the phylogeny, and
what attitude should be taken to it on biological grounds. In §7 the ahistorical nature of the
method is asserted, and general conclusions are drawn about the advantages of the
phylogenetic regression. Section 8 discusses the ease of implementation with a program written
by the author for the purpose, and gives information on how to acquire a copy of it. The
mathematical appendix (§10) defines formally the phylogenetic regression, and states without
proof four theorems about the phylogenetic regression. The proofs have been omitted for
reasons of space, but have been lodged in the archives of the Royal Society and the British
Library Document Supply Centret.

For a general introduction to the statistical problems of the comparative method, and
reviews of extant methods, the reader is referred to Ridley (1983) and Pagel & Harvey (1989).
Papers based on the phylogenetic regression are currently being prepared. The present paper
concerns only the principles of hypothesis testing with comparative data in a regression
framework with a continuous y-variable, and is not intended to be introductory.

2. PRELIMINARIES

In this section, necessary preparation is made for developing the phylogenetic regression. In
§2a the distinction is drawn between similarity due to recognized and unrecognized
phylogeny, and a method of representing the first of these is developed. Similarity due to
recognized phylogeny is treated by developing the standard regression, a generalization of
Felsenstein’s (1985) comparative method to the case of non-binary trees, which also
incorporates a degree of flexibility in assumptions about the covariance structure. Similarity
due to unrecognized phylogeny will be treated in §3 by using the radiation principle of Ridley
(1983), which is therefore explained in §2¢.

(a) Similarity due to recognized phylogeny

Some representation of the phylogeny of the species will be available when a comparative
analysis is to be performed. This may only be the taxonomic divisions into genera, families,
orders and classes, or it may be a more detailed attempt at a phylogeny. I shall assume that
one will be taken as the best available representation of the phylogeny: call this the ‘working
phylogeny’.

The phylogenetic associations represented in the working phylogeny constitute recognized
phylogeny. Most true phylogenies probably contain only binary nodes. If in the working
phylogeny there are nodes with many daughter nodes, then this probably represents our
ignorance about the order of splitting within the set of daughter nodes. Phylogenetic closeness
present in the true phylogeny, but absent from the working phylogeny, constitutes unrecognized
phylogeny. Both types of phylogeny cause statistical problems, and the solutions to them are
quite distinct.

There is an important assumption that must be made about the working phylogeny in order
to make progress. The groups defined by the working phylogeny must be monophyletic. In
other words, the working phylogeny is a valid coarsening of the true phylogeny. A valid
coarsening is obtained by uniting adjacent nodes in a phylogeny, an operation which
corresponds to admitting ignorance about the order of splitting. Transferring one daughter

t Copies of the material deposited may be purchased from the British Library Document Supply Centre,
Weatherby, West Yorkshire LS23 7BQ, U.K. (reference SUP 10052).
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122 A.GRAFEN

node from one parent to another is not allowed. The working phylogeny is a mixture of the true
phylogeny and ignorance about the order of splitting, but is permitted to contain no downright
errors.

The converse of valid coarsening is compatible refinement, a notion that will be useful in §§4
and 5. All the binary phylogenies that can be coarsened to give the working phylogeny are
compatible refinements of the working phylogeny. The compatible refinements of the working
phylogeny are all the possible true phylogenies.

This assumption has implications for how to choose a working phylogeny. Avoid being
spuriously exact about the order of splits, and be content to express ignorance about the order
of splitting as multiple nodes. It is unfortunate in this respect when phylogenies based on
DNA-DNA hybridization, such as that of Sibley et al. (1988), are presented without any
indication of the reliability of the positioning of taxa in the phylogeny.

The standard regression is a generalization of Felsenstein’s (1985) comparative method. His
method of representing phylogenetically based similarity will be adopted here for similarity due
to recognized phylogeny. The aim of the exercise is to specify how similar each pair of species
should be by obtaining a covariance from the tree of the working phylogeny.

Beginning with a tree, as in figure 1, we assign lengths to each path segment. The idea is that
the covariance between two species is obtained as the shared path length in the paths from the
top of the tree to the two species’ nodes. The variance of a species is therefore given by the total
length of the path from the top to the species’ node. This procedure provides a variance for each
species and a covariance for each pair of species. This set of variances and covariances is exactly
what many statistical methods require to work correctly in the presence of non-independence.

Ficurke 1. The figure shows a phylogeny with path-segment lengths indicated. The root of the tree is at the top, and
species are represented by the tips at the bottom. Time therefore moves forward as we move down the diagram.
Notice that the total length from the root to each species tip is the same. This reflects what will usually be a
reasonable assumption that the error variance of each species is the same. The analyses developed in the text
do not depend on this assumption, however.

Notice that the tree-based covariances have a good phylogenetic pattern. The closer two
species are in the phylogeny, the higher the covariance between them.

This method of deriving covariances from the tree has one arbitrary element, namely the
initial assignment of lengths to the path segments. To provide some flexibility in the tree, a
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THE PHYLOGENETIC REGRESSION 123

whole family of sets of lengths will be generated, which differ in the level at which most
variation occurs. In the statistical methods being developed, the data themselves will be
allowed to choose which member of the family fits best.

The generation of the family begins with the specification of an initial tree with lengths. First,
I will explain how the initial tree might be found, and then how the whole family is generated
from it. There are various ways to find this initial tree. One way is to assign a height to each
node as one less than the number of species below or at that node. Then each path segment’s
length is the difference between the height of the upper and lower nodes. This method is
illustrated in figure 2, and it has the advantage of treating taxonomic ranks as arbitrary: the
ranking habits of taxonomists are excluded from our study. Another way is to assign arbitrary
heights to given taxonomic levels, such as zero to species, one to genera, two to families, three
to orders and four to classes. The length of each path segment is again given by the difference
between the heights of the upper and lower nodes. This method would be appropriate if it was
thought that taxonomic rank was a reasonable indicator of expected divergence in the omitted
variables which constitute the error. There are many alternative methods for devising the
initial set of lengths.

O

Ficure 2. The figure demonstrates one way of assigning path-segment lengths to a tree. Each node is given a
number, calculated as one less than the number of species below that node in the tree. All species nodes
therefore receive a value of zero, which is not shown, but the ‘heights’ of all higher nodes are shown inside the
circles in (a). The length of a path segment is computed as the difference between the heights of its upper and
lower nodes. These lengths are shown in (4)..

Both of these methods involve initially assigning a height to each node, and then finding the
length of each path segment as the difference between the heights of its upper and lower nodes.
The method for generating the family involves transforming the heights in the following way.
First scale the heights so that species have a height of zero and the top of the tree has a height
of one. Now we can apply a family of mathematical transformations to the heights in order to
create the family of sets of lengths. The transformations that will be used in the methods being
developed are just the power transformations. Each height will be raised to a given positive
power. This leaves the species at zero and the top of the tree at one, but it distorts the tree either
by compressing near the bottom and expanding near the top (if the power is greater than
one), or compressing near the top and expanding near the bottom (if the power is less than
one). Samples of these distortions are shown in figure 3. This power will be called p.
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(a)

Ficure 3. The figure demonstrates the distorting effect of the parameter p on the phylogeny of figure 1. A high value
of p increases the lengths of segments high in the phylogeny, as in (a). In this case, the radiations low in the
phylogeny would be more reliable evidence, as increased path-segment length means more error. A low value
of p increases the lengths of segments low in the phylogeny, as in (b). In this case radiations high in the
phylogeny would provide more reliable evidence.

(b) The standard regression

When using a method for assigning variances and covariances such as that just described,
there are standard statistical techniques available that provide valid analyses in the presence
of non-independence due to recognized phylogeny. Multiple regression can be performed in the
usual way provided the pattern of variances and covariances is specified (see, for example,
Johnston 1972). This technique is sometimes called Generalized Least Squares.

The family of tree-lengths can be used by finding the best-fitting value of the positive power
and the best-fitting regression parameters simultaneously by maximum likelihood. This is a
satisfactory method of dealing with similarity due to recognized phylogeny, and uses only
routine statistical techniques. It is the least that can reasonably be done when performing a
regression on comparative data. Because this is a satisfactory maximum likelihood method of
dealing with similarity due to recognized phylogeny, it will be of interest to compare it with
the new method I propose in §3. I shall refer to it as the standard regression, because it uses only
standard techniques. It is described more formally in §3 and defined in §10.

The standard regression is a generalization of Felsenstein’s (1985) method. It can be applied
to non-binary trees, and it allows a degree of flexibility in the covariance structure. The aim
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of these extensions is to create a statistical method that can be routinely applied to the kind of
data commonly encountered in comparative biology. The case of a binary tree is special, for
there is no unrecognized phylogeny, and so the standard regression is a fully satisfactory
method. The extension of Felsenstein’s method to non-binary trees requires a way of dealing
with unrecognized phylogeny.

(¢) The radiation principle and similarity due to unrecognized phylogeny

The problem of similarity due to recognized phylogeny, then, has an easy and acceptable
solution which I have just named the standard regression. If the phylogeny is known in full,
this solves the whole problem. However, in most cases full phylogenies are not known, and
working phylogenies have multiple nodes. The unrecognized phylogeny can have the same
effect on the standard regression as recognized phylogeny has on the naive regression in which
all species are taken as independent. Some pairs of species will be more closely related than the
statistical method assumes, and other pairs less so. Points treated as independent by the
statistical method will not be independent. The new method I will propose aims to give robust
conclusions in the presence of similarity due to unrecognized phylogeny.

Each higher (that is, non-species) node together with its immediate daughter nodes can be
considered to be a ‘radiation’. Originally one species, it has branched into a number of taxa.
The principle which allows similarity due to unrecognized phylogeny to be dealt with is to use
each radiation as an independent data point. If the same relationship between two variables
arises in two radiations, this cannot result from phylogenetic similarities, either recognized or
unrecognized. The same relationship must have arisen independently in the two cases.
Observing in an informal way that a relationship has arisen frequently in evolution has no
doubt given justifiable confidence to a number of biologists that the relationship they are
studying is real. But it was Ridley (1983) who advanced the techniques of comparative biology
by inventing (what I call) the radiation principle, which is that formal statistical tests should
be constructed by using each radiation as an independent data point.

Two radiations in a working phylogeny can have one of two relationships with each other.
The first is that neither is ancestral to the other. These radiations cannot be dependent, as they
depend on quite different data. The second relationship is that one radiation is a descendant
of the other. The fact that a positive correlation exists between two characters across the genus
means within a family does not imply that within any one genus there will be a similar
correlation. If there is, then this is independent evidence of an association between the two
characters. Freedom from the taint of similarity due to unrecognized phylogeny is achieved by
counting each radiation only once. If a radiation has ten daughters, it is tempting to assign ten
degrees of freedom to it in total, leaving eight for the assessment of the slope of one character
on another. But ten degrees of freedom are appropriate only if the daughters are independent,
or if the extent of interdependence of each pair of daughters can be exactly specified. In
ignorance of the true phylogeny, this is exactly what we cannot do. The evidence from each
radiation can be safely used, however, if only one degree of freedom is assigned to it.

The principle we shall follow, then, is that radiations can be taken as independent. To ensure
independence in a technical sense requires that the averages at higher nodes are correctly
weighted, and this is discussed further in §3a and 5¢ and 10. Several existing methods are
based on the radiation principle: the method of Ridley (1983), applied by Ridley (1983, 1986,
19894, b), and Sillén-Tullberg (1988) ; the method of Read (1987); a hybrid method applied
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by Krebs et al. (1989); and the method of Felsenstein (1985), applied by Sessions & Larson
(1987). Applying the radiation principle in a general regression framework is the purpose of
the next section.

3. THE PHYLOGENETIC REGRESSION

In this section the phylogenetic regression is developed, by applying the radiation principle
to the standard regression. This involves a transformation of the standard regression, called
‘hanging on the tree’, explained in §3a. This is followed by a process which extracts one data
point for each radiation in the working phylogeny, by using linear contrasts, as explained in
§3b. The phylogenetic regression is a straightforward multiple regression applied to this
reduced data set. To my knowledge, the process of extraction is statistically original. The
method as a whole has an alternative interpretation, developed in §3¢, as a restricted
randomization test, which non-statisticians may find helpful. Section 3d explains the
statistical properties of the phylogenetic regression, and §3¢ elucidates the degrees of freedom
associated with tests using the phylogenetic regression.

It is convenient now to establish some notation. The method is a regression method with one
continuous y-variable, and this will be called y. The x-variables being controlled for will be
called X, and the x-variables being tested will be called Z. y is a vector, and X and Z are
matrices. Let the parameters for X and Z be # and y. The deterministic part of the model can

now be expressed as
P E(y) = Xp+Zy,

and the null hypothesis that Z is irrelevant to y is written formally as y = 0. (For convenience
in this section, the constant is taken to be one of the columns of X. Elsewhere in the paper it
is written separately.)

The deterministic part is the same for the naive species regression and the standard regression
described in §24. They are distinguished by the stochastic parts of the model. If the error term
is €, then

’ e=y—Xp—Zy
and the species regression assumes that

E(ee™) = ¢?I,

that is, the errors for each species are equal and there are no covariances between the errors.
The standard regression assumes that € is multi-normally distributed with zero mean and that

E(e;¢) = 0'2Vij(/)) = 72(1_}l€j)-

The power p represents the power to which the heights are raised before computing the path
segment lengths. The variances and covariances therefore depend on p as well as on o2 A is
the height in the initial working phylogeny at which the paths to species i and j diverge. Species
have a height of zero, and the top of the tree has a height of one.

In the standard regression introduced in §2b, p is fitted simultaneously by maximum
likelihood with the regression coefficients § and y.

(a) ‘Hanging a variable on the tree’

The phylogenetic regression works by extracting one data point from each radiation. It is
necessary to explain first a transformation of a variable from its original form of one number
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for each species, into a form in which the information is spread through the working phylogeny.
Taking the working phylogeny, with the values of y for each species represented at the species
tips, we can work up the tree writing at each higher node the mean value of y for the daughter
nodes. Then, we can transform these values by representing each node’s value as a deviation
from its parent node’s value. The values of y are now expressed incrementally down the tree.
Figure 4 illustrates this process. The process can be carried out for any variable, and may be
called ‘hanging on the tree’.

(a)

+3

+1 2

FiGurek 4. (a) The species measurements at the bottom have been averaged up the tree to yield means at the next
set of nodes, and then those node means have been averaged to yield the highest node’s mean. In a larger
phylogeny, this process would continue up the tree until every higher node had a mean calculated for it. The
means in this example are unweighted. This is appropriate if the path segment lengths are all equal. In general,
the means are weighted so as to be efficiently estimated according to the variance-covariance structure implied
by the path-segment lengths. The weights are defined in the matrix L in § 10. In (), each path segment has been
assigned a value by subtracting the upper node’s value from the lower node’s. The mean for any node can now
be calculated by starting with the grand mean and adding the values found on the path from the root of the
tree to that node. Thus the original species data has been re-represented as a hierarchy of phylogenetically
arranged differences from a grand mean.

Each radiation can now be drawn as in figure 5, with one point for each of the daughter
nodes. Only two variables can be conveniently represented, but the principle applies to any
number.

The means used are weighted means. The weights are derived using the path segment
lengths of the working phylogeny. They are chosen to make each mean an efficient estimate,

11 Vol. 326. B
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Ficure 5. The axes represent two continuous characters. Each point represents one of the four daughter nodes of
a higher node. A daughter node’s point is plotted as the deviation of the mean for all species below the daughter
node from the mean for all species below the parent node. This is why the mean value of the points must equal
zero on both axes. If a regression through the origin gives a non-zero slope, this is evidence from within the
radiation for a relationship between the two variables. The principle of this two-dimensional plot extends to
many dimensions.

on the assumption that the variable concerned is normally distributed with a vari-
ance—covariance structure given by the path segment lengths in the working phylogeny. The
error of a mean at a node therefore comprises a part due to the path segment lengths directly
below the node, and a part due to the sampling errors of the means of the nodes at the end of
those path segments. The matrix L defined in §10 contains these weights.

(b) Linear contrasts

The phylogenetic regression reduces each radiation in the form of figure 5 to one data point
by forming a linear contrast of the points on the graph. A linear contrast is a weighted sum,
in which the weights themselves sum to zero. The same linear contrast can be applied to all the
variables in a data set, so that the resulting data point has as many variables as the original
data point. Figure 6 illustrates the regression formed from the linear contrasts, which contains
one data point for each radiation.

‘Ficure 6. The axes represent two continuous characters. Each point represents one radiation in the working
phylogeny. Each point is derived from a plot like figure 5 for its own radiation, and is a linear contrast of the
points in that plot. ‘A linear contrast is a weighted sum whose weights sum to zero. If all the points lic on the
same line through the origin, then the linear contrast must also lie on that line. If all the radiations have a plot
in which the daughters’ points lie on the same line, then this is strong evidence for an association between two
characters. This situation would result in all the linear contrasts also lying on that line, so the strength of
evidence is.passed onto the plot shown here. The regression analysis performed on a plot like this is called the
short regression. The principle of transferring from radiation plots (as in figure 5) to the short regression plot
(in this figure) is shown for two characters, but is performed in exactly the same way for any number of
characters.

In this final data set, the effects of unrecognized phylogeny have been eliminated by
condensing each radiation into one data point. The variance-covariance matrix of the errors
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in this reduced, or ‘short’, regression, can be computed from the errors in the standard
regression and the linear contrasts used. Conventional regression techniques can therefore be
applied to this short regression, and their results will be valid despite similarity due to
unrecognized phylogeny. The test of the hypothesis y = 0 in this short regression is the
eponymous test of this paper: the phylogenetic regression.

The choice of linear contrasts has not yet been explained. They are defined precisely in the
Appendix as the matrix product GC™*. The linear contrasts are derived from the residuals in
the standard regression of y on X. These residuals are ‘hung on the tree’. After separate scaling
within each radiation, these residuals provide the linear contrasts. (The scaling is used, purely
for convenience, to ensure that the variance—covariance matrix of the short regression has a
particular form.) Any choice of linear contrasts which did not depend on Z or € would ensure
validity. However, to achieve good power, and to avoid making arbitrary choices, it was
desirable to have the contrasts depend on €. This particular choice was made to ensure that
despite this dependence the test is still valid (see theorem 2 of §10). These linear contrasts
weight those points more heavily which are less well explained by X alone.

An alternative interpretation established in theorem 3 of §10 is that, in the test for Z, we
condition on certain properties of the residual from the regression of y on X. These properties
are the ‘pattern’ of the residual at each radiation, to be explained in §3¢. The process of
extracting one data point from each radiation is, to my knowledge, statistically novel. It is
hoped that readers will find at least one of the three interpretations readily understandable.

The phylogenetic regression therefore applies the radiation principle in having one data
point in its data set for each radiation. The method of condensation allows a data point to have
any number of variables, and so arbitrary numbers of variables can be controlled for and tested
for in the short regression.

(c) A randomization test

The phylogenetic regression can also be explained as a randomization test, and biologists
have found this alternative perspective helpful. Readers who have found the weighted sums
and linear contrasts perfectly clear may wish to skip this subsection. In the standard regression,
the test statistic for Z, controlling for X, would be an F-ratio in the usual way as follows:

F=MS,/MS

error?

in which MS stands for mean square. This F-ratio would be looked up in tables. The point of
using radiations as replicates is that the distribution of this F-ratio is unreliable, and probably
too optimistic about the significance of Z.

The idea of the randomization test is to construct random ‘alternative Zs’, and to compare
the explanatory power of the observed Z with that of the alternatives. Ordinary regressions can
be interpreted as randomization tests of this sort, and the special properties of the phylogenetic
regression will be easier to understand in that context. Let F(y, X, Z) stand for the F-ratio
obtained by testing for the significance of Z, controlling for X, in explaining the variation in
y. The null hypothesis distribution for the F-ratio is conventionally thought of as being
generated by replacing y with a normally distributed random variable, say v. Then if v is a
normally distributed vector, the null hypothesis distribution is generated by F(v, X, Z). This
can be thought of as comparing Z’s ability to explain y with Z’s ability to explain random
numbers.

An alternative view is to keep y fixed, but to substitute random numbers for Z. Suppose that

I11-2
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Z has n, degrees of freedom associated with it. Then let = be a random matrix, each of whose
n, columns is identically and independently distributed in a normal distribution. Then
comparing F(y, X, Z) with the distribution generated by F(y, X, F) is comparing Z’s ability
to explain y with the ability of an equivalent number of random variates to explain y. Provided
v and each column of Z all have the same variance—covariance matrix as that assumed in the
computation of the sums of squares, these two tests are the same. The F-ratio would have the
same probability distribution in the two randomization tests.

The reason for explaining this interpretation of ordinary regressions as a randomization test
is that the phylogenetic regression can also be understood as a randomization test, which
imposes a restriction on the possible values which the Zs, the randomized alternative versions
of Z used to generate the null hypothesis distribution of the test statistic, may take.

To explain this restriction, it is necessary to decompose Z into two different kinds of
information. By hanging Z on the tree, each radiation can be drawn as in figure 7, with one
point for each of the daughter nodes. The relative values of the daughter’s deviations may be
called the pattern of the radiation. Each Z-variable has its pattern at each radiation. By
conserving the patterns, all correlations within a radiation are also conserved. This includes
correlations between one Z-variable and another, and between one Z-variable and the y-
variable. Correlations including only a subset of the daughters are also conserved if the pattern
is conserved. These intra-radiation correlations are the untrustworthy part of the information
about Z, because they may be contaminated by unrecognized phylogeny. Two clumps of
values may represent distinct sister groups within the radiation.

F16ure 7. Part (a) Values attached to the path segments at the middle node of figure 4, which are deviations of —2,
—1 and 3. Parts (b), (¢) and (d) have the same pattern as the original values, because they are in the same ratio,
but their magnitudes are different.

Apart from pattern, there is only one degree of freedom left (for each Z-variable) in
describing the daughter’s deviations at a radiation, their magnitude. The magnitude is the
absolute size of the deviations, and is scaled so that it equals one if the variance of the
daughter’s values equals the variance of the residuals in the corresponding radiation after the
regression on y on X.

Each Z-variable in each radiation has a pattern and a magnitude. The restriction which the
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phylogenetic regression places on each Z is that it should share the same patterns as Z at all
radiations. Only the magnitudes differ. The rationale for this is that each 5 has the same set
of correlations within each radiation with itself and with y as Z does. As all the contamination
of unrecognized phylogeny is contained in those intra-radiation correlations, each = has the
same advantage from unrecognized phylogeny in explaining y as Z does. It follows that if Z
explains a significant fraction of the variation in y, compared with the null hypothesis
distribution created using the restricted =, then this cannot be due to unrecognized phylogeny.
That is the basis of the randomization interpretation of the phylogenetic regression.

Figure 8 shows an example of a Z, and of Z values formed which share its patterns but differ
in their magnitudes. It illustrates that they share the general ‘ phylogeneticness’ of Z, and also
share the same correlations within each radiation.

Theorem 4 of §10 states formally the equivalence of the randomization test with the
phylogenetic regression.

(a)

Ficure 8. This represents two instances of randomized versions of the phylogeny in figure 4, in which the
magnitudes of the deviations have been altered. In (a), the factors are —1 for the top node, and —2, 0.5 and
—1 for the lower nodes. In (b) the factors are —2 for the top node, and 2, —1 and —0.5 for the lower nodes.
The data in each tree therefore shares the same degree of ‘ phylogeneticness’ as the original.

(d) Statistical properties

The purpose of this section is to explain briefly what is known about the statistical properties
of the phylogenetic regression. It is proved in §10 that if the working phylogeny is the true
phylogeny, and if the value of p is taken as fixed and known, then both the standard regression
and the phylogenetic regression are exact tests. It follows from general results on Generalized
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Least Squares (Johnston 1972) that the standard regression has various optimality properties.
It is best linear unbiassed, and uniformly most powerful. Once p is unknown and must be
estimated, these exact results no longer apply, but give confidence that the tests are reasonable.

A larger step is to relax the assumption that the working phylogeny is the true phylogeny.
In the test to be proposed in §4 for comparative methods, the ‘true phylogeny’ is selected as
a random compatible refinement of the working phylogeny. For data created in this way, in
which both the error and the Z-variable that is being tested for are created using the same true
phylogeny, the standard regression can be expected to be invalid. Correlations between the
error and the Z-variable will be created which are due to error correlated with phylogeny, but
the standard regression will attribute them to a true relationship.

This problem for the standard regression is dealt with by the phylogenetic regression by
using only one data point for each radiation. Although the radiations are in a loose sense
‘independent’, the points in the short regression are not completely independent in a statistical
sense, and so the phylogenetic regression can have no pretensions to exactitude. The reasons
for this will be considered in more detail in §5e. The behaviour of the standard and
phylogenetic regressions in the more complex cases have been investigated by simulations
reported in §5.

(¢) Phylogenetic degrees of freedom

The final topic in describing the phylogenetic regression is degrees of freedom in the
phylogenetic regression, and the points can be made most easily with reference to table 1. The
table is drawn up for an example in which a pair of variables Z is tested for its effect on y,
controlling for the constant and a set of three variables X. The data set has 49 species, and the
working phylogeny has 23 higher nodes. The total degrees of freedom will be considered first.
The most obvious point is that the total number of degrees of freedom in the standard
regression is the number of species, but is at most the number of higher nodes in the
phylogenetic regression. There is no constant in the phylogenetic regression, so one degree of
freedom is not allotted to the constant as it is in the standard regression. The main consequence
of this reduction is that not so many explanatory variables can be studied. An absolute limit
to the number of explanatory variables in the regression is the number of degrees of freedom
in it. It is advantageous to have many more degrees of freedom than explanatory variables.
This shows the importance of knowing the phylogeny and so increasing the number of degrees
of freedom in the phylogenetic regression. It is natural and desirable that the more ignorant
we are about the phylogeny the less we should be able to infer about cross-species relationships
between variables.

The total degrees of freedom for the phylogenetic regression may be less than the number of
radiations, as illustrated in the PHY (ii) column of table 1. This occurs when the residuals from
the standard regression of y on X, once ‘hung on the tree’, are exactly zero at all the daughters
of a higher node. This can arise in two ways. The first way is that the X-variables contain a
subset which vary only in the radiation in question, a subset sufficiently numerous to ensure
that the fitted y-values exactly equal the observed y-values. This is analogous in a non-
phylogenetic regression to having a categorical variable that takes one value for all data points
except one. That special data point is effectively deleted from the regression because it can be
fitted exactly. The second way in which all the residuals in a radiation can be exactly zero is
if the observed values of y just happen to lie on the fitted line. This ‘just happening’ will have
probability zero if we assume that the error in the standard regression is normally distributed.
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TaBLE 1. EXAMPLES OF POSSIBLE DECOMPOSITIONS OF DEGREES OF FREEDOM IN THE
PHYLOGENETIC REGRESSION

(Testing for the effect on y of Z, controlling for the constant and X. The data set has 49 species and 23 higher nodes.
In the standard regression (STD), the total degrees of freedom is therefore 49, whereas in the usual phylogenetic
regression (PHY (i)) the total is 23. Notice that there is no constant in the phylogenetic regression. PHY (ii) shows
the case in which there is no variation at one higher node in the working phylogeny after the standard regression

“of y on the constant and X. That node is dropped, and so the total number of degrees of freedom is 22 not 23. By

subtraction, the residual degrees of freedom are also reduced by one. PHY (iii) shows the case in which three
variables which are not collinear in the standard regression, namely the three columns of X, are collinear in the
phylogenetic regression. This reduces the degrees of freedom associated with X, but leaves the total unchanged. The
residual degrees of freedom are therefore increased by one.)

source STD PHY(i) PHY(i) PHY(iii)
constant 1 0 0 0
X 3 3 3 2
Z 2 2 2 2
residual 43 18 17 19
total 49 23 22 23

But regression methods are routinely and reasonably used in cases where this cannot be true,
for example where the y-variable is an artificial variable containing a ranking of some attribute
of the species into a small number of groups. The case where the errors are exactly zero
therefore needs to be considered.

No matter how it arises that all the residuals at a radiation are zero, the consequences are
the same. As explained in §35, the linear contrasts used to form the short regression are the
residuals at the radiations. But if all the residuals at a radiation are zero, then there is no
variation left for Z to explain. Hence that radiation contributes no information about the
explanatory power of Z. That radiation must therefore be dropped from the short regression.
Such radiations would arise if the phylogenetic regression were applied to binary data of the
kind to which Ridley’s (1983) method is applicable, and would be those radiations which have
no variation below them. This establishes a close formal parallel between Ridley’s method and
mine.

The degrees of freedom associated with a variable will usually be the same in the tests derived
from the standard and phylogenetic regressions. The exceptional case, exemplified in the
PHY (iii) column of table 1, will now be considered. Two explanatory variables which are
not collinear in the standard regression may be collinear in the phylogenetic regression. In the
simplest situation, two variables once ‘hung on the tree’ are zero except in the highest radiation
in the tree, but differ there. In the standard regression, the differences within that radiation
suffice to prevent collinearity. However, in the phylogenetic regression these two variables will
be zero except at the highest radiation, and so will be collinear as one will be a multiple of the
other. A welcome consequence is that testing for one of the variables while controlling for the
other is not possible, because of the collinearity. This is natural, as the information separating
the two variables comes from within one radiation, and by the radiation principle this
information cannot be trusted. More complex cases involving more variables and more
radiations arise analogously.

These complications were omitted from the discussion earlier in §3 for the sake of clarity.
They arise naturally in the formal treatment of the phylogenetic regression in §10.
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4. How A SOLUTION TO THE PHYLOGENETIC PROBLEM CAN BE RECOGNIZED

Discussions of the merits of different proposed solutions to the statistical problems of
comparative analyses have usually been vague in their criteria of acceptability of a method.
Most proposals can be classified as at best informal ameliorations of methods that treat species
as independent. Only Ridley (1983) and Felsenstein (1985) have made any attempt to prove
that a method is correct. I now establish a criterion by which the proper working of the
hypothesis testing of any proposed regression method for comparative data can be recognized.
The criterion is applied in §5.

There are two basic properties of any statistical test: size and power. The reader is referred
to any book on the theory of statistics (e.g. Cox & Hinkley 1974) for discussion of these
properties. Size is the chance that significance will be achieved if the null hypothesis is true. A
test is valid if the size equals the nominal p-value for every p-value. Tests must be valid to be
acceptable. Among the class of valid tests, the preferred test is the one with maximum power.
Power is the ability to give significance when the null hypothesis is not true. The power will
usually depend on which significance level is chosen, and also on which alternative hypothesis
is used.

The quite general notions of size and power are made concrete in a particular case by
adopting a model for generating hypothetical data. Proposing a test for phylogenetic methods
of analysis is a matter of proposing a model for generating data, which can then be used to find
the size and power of any method. To make data in accordance with recognized phylogeny is
easy, using the path segment lengths as illustrated in figure 1. Each path segment is allotted
an independent normally distributed random variable with variance equal to its length. The
data for a species is then the sum of the random variables on the path from the top of the tree
to that species’ node. This will create species data with the variances and covariances implied
by the tree.

In order to include unrecognized phylogeny, I propose instead the following modification of
this model. Starting with the working phylogeny, choose at random (following a procedure to
be described directly) a binary phylogeny that is a compatible refinement (see §2a) of the
working phylogeny. Assign path lengths to the binary phylogeny by following the method of
figure 2. Then generate the data from the binary phylogeny by using the path segment lengths.
This is a two-step process, and each step is to be performed each time a data set is to be
generated. This will produce data with patterns resulting from recognized and unrecognized
phylogeny.

To be well defined, this method requires a specification of exactly how the compatible
refinement is chosen. The particular method I have chosen is as follows. Each non-binary node
is dealt with separately and independently, representing the independence of our ignorance of
the order of splitting at each multiple node. Suppose a node has n daughters. The first step is
for one of the daughters, each having a 1/z chance of being selected, to be assigned to group 1.
Then another daughter, with each of the remaining #-1 daughters having a 1/(r-1) chance of
being selected, is assigned to group 2. Each of the remaining 7-2 daughters has an independent
chance of one half of joining group 1 rather than group 2. The phylogeny can now be modified
as follows. If a group has more than one daughter, then a new node is created as a daughter
of the original parent node, and as the parent node of all the daughters in that group. If a group
has one daughter, then that daughter remains a daughter of the original parent node. The
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original parent node is now a binary node, and by applying the process recursively to all newly
formed non-binary nodes, the original multiple node will be replaced by a set of binary nodes
which are a compatible refinement of the original multiple node. This procedure implicitly
defines a probability distribution over the set of binary compatible refinements of any working
phylogeny.

This two-step random procedure involves choosing a phylogeny at random, and then, given
the phylogeny, the values of the variables. The first step introduces phylogenetic similarities
between species which are not recognized by the working phylogeny. A method of analysis that
is valid for data created in this way will therefore have to deal properly with similarity due to
unrecognized phylogeny.

The test I propose for regression methods for corﬁparative data is then as follows. Many data
sets are generated by using the procedure just described. It is important that both the error and
the x-variable being tested for are created phylogenetically, so that the similarity due to
unrecognized phylogeny affects them both in the same way. The method being tested is then
used to analyse these many data sets. The validity of the test is checked by observing on what
fraction of trials nominal p-values are exceeded when the data are constructed under the null
hypothesis. The power is investigated with data constructed under an alternative hypothesis.
This test is applied in §5 to the phylogenetic regression and some other methods.

There are two arbitrary elements in the test I have proposed. Some other choice could have
been made for the probability distribution over the compatible refinements, and some other
rule could have been used to assign path lengths to the binary trees. There is no natural choice
in either case; this fact reflects our ignorance about phylogeny and omitted variables (see §6a).
Although it has some arbitrary elements, this model is much more satisfactory than a model
with no similafity due to unrecognized phylogeny, and immensely more satisfactory than no
model at all.

5. THE CRITERION APPLIED

The simulations reported here implement the simulation test for phylogenetic methods
proposed in §4. The behaviour of neither the standard nor phylogenetic regressions is known
analytically for this situation, and only the soundness of the general principles underlying the
phylogenetic regression give confidence that it will perform well in this simulation test. Some
other methods will also be subjected to the simulation test.

A minor purpose of this section is to show that the phylogenetic regression is unqualifiedly
better than various rivals, but this much is almost obvious from its derivation. The major
purpose is to investigate how well behaved the phylogenetic regression is in absolute terms. One
practical problem is that if the phylogenetic regression is only slightly better than a rival, it may
not be worth the extra effort to use the phylogenetic regression. It will be important to see by
what margin the phylogenetic regression outdistances its simpler competitors. The difficulty of
use depends on the software available for implementation; this aspect is discussed in §8.
Technically, there are four reasons why the phylogenetic regression is not exact for the kind of
data simulated in this section. These reasons will be discussed in §5¢ after the magnitude of
the difficulties they cause has been assessed. _

One superficially attractive type of simulation has not been performed, and that is to find
the effect of mis-specification of the path segment lengths. For example, it would be possible
to find the effect of using the path segment lengths derived by the method of figure 2 in the

12 Vol. 326. B
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analysis, but creating data by using some other method. The reason this has not been done is
that the aim of the present paper is to provide the same kind of justification for the phylogenetic
regression as already exists for multiple regression with non-comparative data. Misspecification
of the variance—covariance matrix invalidates multiple regression in that case, just as it would
invalidate the phylogenetic regression with comparative data. In both cases, these difficulties
are an intrinsic part of the problem, not failures of the solution to the problem. There is
therefore no point in trying to prove that mis-specification does not invalidate the phylogenetic
regression, because it must. It is possible to investigate whether the phylogenetic regression is
likely to be more invalidated by mis-specification than the multiple regressions which biologists
perform routinely with other data, but this imprecise problem has not been tackled here. It is
important to realize that every regression method for comparative data comes up against the
problem of potential mis-specification, whether or not this is recognized by its practitioners.

(a) The working phylogenies

There are two working phylogenies used in the simulations. The first has 100 species divided
into genera of ten species each, all belonging to one family. The second is illustrated in
figure 9, and has 72 species and 23 higher nodes. The path segment lengths were generated by
using the method of figure 2, and then transformed. Both working phylogenies were simulated
with p=1 and p = 0.2.

Ficure 9. This figure shows the second working phylogeny used in the simulations.
There are 72 species and 23 higher nodes.

(b) The methods of analysis

(i) The naive species regression. Each species is treated as an independent data point with
equal weight.

(ii) The standard regression, the maximum likelihood method described in §2 () and §3,
and defined in §10. The value of p was estimated by maximum likelihood in each trial, using
the regression of y on X. Then that estimated value was taken as fixed to test for the addition
of Z. The number of degrees of freedom in the denominator of the F-ratio was diminished by
one on account of the estimation of p. The ill-conditioned nature of the estimate of p (discussed
in §65) and the primacy of hypothesis testing make it reasonable to take the first value of p
as fixed when adding Z to the regression, rather than re-estimating p simultaneously with the
estimation of y. This method is also computationally less burdensome.

(iv) The phylogenetic regression, the method described in §3 and defined in §10. The
estimated value of p from the standard regression of y on X was taken as fixed in the calculation
of the phylogenetic regression. The number of degrees of freedom in the denominator of the
F-ratio was diminished by one on account of the estimation of p-

(iv) The ‘genus means’ analysis. This method is applied only to the first working phylogeny.
The method treats the genus means as independent data points of equal weight.

(v) The ‘nested species within genus’ analysis. This method is applied only to the first
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working phylogeny. The method treats the deviations of species around genus means as
independent data points of equal weight. It is implemented like the species regression, but each
model includes a categorical variable which has a different level for each genus.

(¢) How the data are created

The data generated are y, X and Z. Throughout the simulations, there are three variables
being controlled for, so X is a matrix with three columns. There is one variable being tested
for, so Z is a matrix with one column. The pseudo-random number generator seeds are set
differently at the beginning of each series. GLIM’s standard pseudo-random number generator
was employed.

Xis given values, which are constant through a series of trials. They are assigned values using
the random number generator, and are normally distributed with zero mean and unit
variance. X is therefore not phylogenetically distributed. In each trial, the working phylogeny
is used to generate a binary compatible refinement. This binary phylogeny is then used to
create Z and € by using the path-segment method of figure 2. A standard normal random
number is drawn for each path segment in the binary phylogeny, and multiplied by the square
root of the path segment length, so that its variance equals the path segment length. Then the
value for each species is derived as the sum of all the random variables on the path from the
top of the tree to the species’ node; y is then constructed by using

5
y= X[—3]+Z’y+e,
1

where v is zero for series in which the null hypothesis is true, and 0.3 for series in which the null
hypothesis is false. The crucial point is that the same binary phylogeny is used to create ¢ and
Z, thus causing similarity between species due to phylogeny not represented in the working
phylogeny.

Then the data set y, X and Z is subjected to the methods being tested. In each series there
are 1000 trials. For each series, and for each type of regression, the results are presented as a
table showing (i) the actual frequency with which the nominal 0.1, 0.05, 0.025, 0.01, 0.005 and
0.001 p-values were exceeded; and (ii) the root mean square error of the estimate of y.

(d) Results

The counts in tables 2 and 3 can be assessed statistically as they have a binomial distribution.
This is reasonably well approximated by a Poisson distribution, so that the standard error may
be estimated as the square root of the observed value. Note that counts in the same columns
are not independent as a count includes all counts below it in the table. The differences
between successive counts are independent subject to the total of 1000 trials in each column.
The results from different quarters of a table are independent, as they used different data. Each
quarter of table 3 used only one set of data. Each quarter of table 2 used two sets of data, one
for the standard and phylogenetic regressions and the other for the species, genus means and
nested regressions. Much smaller differences are likely to be reliable when a comparison is
made between products of the same data set than would be suggested by Poisson variability.

Simulations are reported in table 2 for the first working phylogeny, and in table 3 for the
second. The left-hand side of each table shows results under the null hypothesis (y = 0), and
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TABLE 2. RESULTS OF SIMULATIONS WITH WORKING PHYLOGENY 1

(P is the P-value, and E is the expected number of times it is exceeded under the null hypothesis in 1000 trials. SP
is the species regression, STD is the standard regression and PHY is the phylogenetic regression. GM is the analysis
which treats the genus means as independent. ND is the nested analysis in which the species deviations from their
(true) genus means are assumed to be independent. The top half of the table is for p = 0.2, the lower half for p = 1.
The left-hand side is for y = 0, the right for y = 0.3. Within each quarter, the top six rows of numbers contain
the actual number of times in 1000 trials the nominal P-values were exceeded. RMS (root mean square of deviations
from the true value) is computed from the 1000 estimates of the value of y. The relative power index (see text for
details) of the phylogenetic regression is 80 %, for p = 1, and 779, for p = 0.2.)

P E SP STD PHY GM ND E Sp STD PHY GM ND
p=1
0.1 100 748 362 112 238 348 100 785 761 483 327 735
0.05 50 705 280 47 158 259 50 750 699 326 234 674
0.025 25 658 214 20 97 194 25 713 645 204 151 625
0.01 10 608 149 7 54 121 10 679 584 108 83 556
0.005 5 567 118 3 36 90 5 642 541 60 51 502
0.001 1 506 61 0 7 41 1 593 423 11 15 397
RMS — 0.517 0.184 0.975 0.711 0.183 — 0.509 0.183 1.042 0.692 0.192
p=02
0.1 100 329 148 93 129 112 100 802 874 740 216 843
0.05 50 239 79 39 69 61 50 746 795 583 148 757
0.025 25 186 40 15 34 30 25 693 724 424 71 663
0.01 10 139 19 3 11 12 10 596 613 256 41 545
0.005 5 96 11 0 5 4 5 529 532 148 21 458
0.001 1 62 2 0 1 0 1 418 367 36 5 297
RMS — 0.173 0.112 1.335 0.549 0.113 — 0.174 0.113 1.640 0.561 0.118

y=0 y =03

TABLE 3. THE RESULTS OF SIMULATIONS USING WORKING PHYLOGENY 2

(Column headings, and content and arrangement as for table 2. The relative power index of the phylogenetic
regression is 1059, for p = 1, and 959, for p = 0.2.)

P E SP STD PHY E Sp STD PHY
p =
0.1 100 712 186 125 100 760 734 642
0.05 50 644 107 58 50 710 630 524
0.025 25 584 66 31 25 666 553 420
0.01 10 533 30 10 10 617 - 456 283
0.005 5 491 20 6 5 576 383 205
0.001 1 415 5 1 1 524 233 83
RMS 0.513 0.147 0.402 0.509 0.156 0.518
p=02
0.1 100 245 116 97 100 703 786 745
0.05 50 178 63 44 50 631 675 623
0.025 25 124 29 19 25 557 570 517
0.01 10 82 14 5 10 462 451 362
0.005 5 64 4 4 5 409 366 263
0.001 1 31 2 2 1 275 207 106
RMS 0.178 0.125 0.416 0.181 0.128 0.620

y=0 y=03

the right hand side the results under an alternative hypothesis (y = 0.3). The data in the upper
half of each table was created with p = 1, thus introducing strong phylogenetic effects. In the
lower half, the data were created with p = 0.2, introducing much weaker phylogenetic effects.

The first important conclusion can be drawn from the left-hand (y = 0) side of the tables.
The phylogenetic regression is the only method that is approximately valid in every case. Every
other method is seriously invalid somewhere; all are in the top left quarter of table 2. On the
crucial grounds of validity the phylogenetic regression is wholly superior to the other methods
employed here.
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Its validity was investigated formally by fitting a logistic regression to the independent
successive differences in the left-hand (y = 0) side of the tables. The expected value of those
differences is used as an offset in the model. The analysis shows that the results taken together
differ significantly from validity (x3, = 43.3, p < 0.01). The first main effect is that the
numbers of p-values falling below the 0.1 level in the four categories differ significantly from
the expectation of 100 (¥ = 16.7, p < 0.01). Inspection of the P = 0.1 row in the left-hand
(v = 0) side of the tables suggests that this is mainly caused by the values for high p being too
high. The second main effect is that within the categories of p-value of 0.1 and below, there
is a tendency for the more significant levels to be less numerous than expected, and for the less
significant levels to be more numerous (a linear contrast taking consecutive integer values for
the successive column differences gives ¥ = 10.7, p < 0.01), although the strength of this
tendency does not seem to depend on p, or on the working phylogeny (y3 = 3.03, p > 0.25).
The residual variation (y3, = 12.8) is satisfactorily small and consistent with the binomial
nature of the data. These significant deviations from validity are consistent with the
approximate nature of the test; the probable reasons for the deviations are discussed in §5 (e).

The strong statistical significance of the deviations should not be mistaken for strong
magnitude of effect. The data set has a total count of 4000, so even small effects can be
detected. One way to measure the magnitude of the deviations is comparison with the other
methods. Another is to consider whether one’s inference from an analysis would be much
affected by knowing that a p-value that claimed to be 59, was in fact a p-value of 3.99, or
5.89,, which are the most extreme values the phylogenetic regression produces in the two
tables. These values are probably well within the range of invalidity that would be produced
in usual sorts of regression by mild relaxation of assumptions of normality, constant variance
and independence of data points.

The invalidity of the other methods is not minor in scale. In the top left (y =0, p=1)
quarter of table 2, the species regression gives p < 0.001 over 50 %, of the time, and the standard
regression gives p < 0.001 over 6 9, of the time. These are major discrepancies. It is tempting
to think that if an effect is very highly significant, then however bad a method is, we can be
sure that there is some evidence of an effect. These results show that this is far from being the
case.

The advantage in validity of the phylogenetic regression is stronger in the top (p = 1) halves
of the tables than in the bottom (p = 0.2) halves. This is to be expected, as higher values of p
correspond to stronger effects of phylogeny in general, leading to an advantage over the species
regression ; and to stronger effects of unrecognized phylogeny as well, leading to an advantage
over the standard regression, and the genus mean and nested methods.

The invalidity of other methods makes it difficult to assess the power of the phylogenetic
regression. In order to get some measure of its power, I have constructed a ‘relative. power
index’ as follows. My aim was to compare the power of the phylogenetic and standard
regressions at the 59, p-value. If the standard regression were valid, this would be done by
comparing the entries in the right hand (y = 0.3) side of each table corresponding to the 59,
nominal p-value for the phylogenetic and standard regressions. As the standard regression is
wildly invalid, this would be a nonsensical comparison. Instead I have tried to find the actual
59, p-value for the standard regression by fitting a curve between the number of times the
standard regression exceeded the nominal p-value under the null hypothesis (y = 0), and the
number of times it exceeded the nominal p-value under the alternative hypothesis (y = 0.3).
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There are six data points for this curve from the top and bottom halves of each table, one point
for each nominal p-value. Each point takes its y-value from the right-hand (y = 0.3) side and
its x-value from the left-hand (y = 0) side. By interpolation on this curve, I can find the power
corresponding to the actual 59, p-value. The curve was fitted by using GLIM. The y-axis was
first transformed to be 1000 minus the entry in the right-hand (y = 0.3) side of the table. A
reciprocal link with a Poisson error was found to give a good fit. (The correlation of the errors
and binomial nature of the data vitiate this as a statistical exercise, but the purpose is simple
curve-fitting.) Each half-table’s data was fitted separately. This yielded an estimate of the
number of times the actual 59, p-value was exceeded by the standard regression for each value
of p. Each kind of regression should exceed the 59, p-value 50 times by chance, so 50 is
subtracted from the observed figure for the phylogenetic regression and from the estimated
_ figure for the standard regression. These excesses measure the power of the methods. The
relative power index is then calculated as the observed excess of the phylogenetic regression
divided by the estimated excess of the standard regression, and expressed as a percentage.
1009, means that the phylogenetic regression and standard regression are estimated to be
equally powerful.

It is to be expected that the phylogenetic regression will be less powerful because it throws
away information whose value it cannot assess. The standard regression uses this information
and is invalid as a consequence. But by interpolating to the actual 5%, p-value, we have
assessed after the event how reliable that information was, and so the standard regression
should have good power properties when treated in this way. (Of course this is only possible
in a simulation with repeated data sets; in the ordinary situation of using the method, with a
unique data set and in ignorance of whether the null hypothesis is true or not, it would be
impossible to correct for invalidity in this way.) The relative power indices were 80 %, 77 %,
1059, and 959, for the four half-tables. These indicate that the phylogenetic regression has
remarkably good power properties. Even the lower figures of 809, and 77 9%, are excellent, in
view of the fact that the phylogenetic regression is the only valid method. It may be that the
lower values for the first working phylogeny arise from the small number of degrees of freedom
in the denominator of the F-ratio, though of course these values are much too few to claim this
as a conclusion.

The species regression is particularly unpowerful when p = 1, as can be seen by comparing
its right- and left-hand columns in the upper halves of tables 2 and 3. Whether the species
regression attains significance is principally influenced by chance, and only a little influenced
by whether there is a real effect to be detected.

The genus means method comes closest of the other methods to validity in the top left
(y =0, p = 1) quarters of tables 2 and 3. This is done by discarding most of the information,
as revealed in its very poor power shown in the top right (y = 0.3, p = 1) quarters of tables
2 and 3.

Next, I discuss the estimates of y. The tables show the root mean square deviation from the
true value of v, which is 0 in the left-hand side of each table and 0.3 in the right. All of the
methods have unbiased estimates except for the phylogenetic regression under the alternative
hypothesis. In each case, the estimate of the bias, the mean estimate over the 1000 trials, was
less than twice its standard error, the root mean square divided by the square root of 1000. The
phylogenetic regression was biased when y = 0.3. In fact, the mean estimates of y in table 2
were 0.823 (p = 1) and 1.527 (p = 0.2), and in table 3 were 0.397 (p = 1) and 0.529 (p = 0.2).
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These correspond to biases of 0.523, 1.227, 0.097 and 0.229. The bias is most easily explained
by reference to the short regression. The linear contrasts used to form the short regression
contain squared terms in Z if the null hypothesis is false, as they are derived from the errors
of a regression of y on X. When these squared terms meet Z itself in the calculation of the
estimate of y in the short regression, a cubic term in y appears. This bias does not affect the
hypothesis testing properties, which are fully captured by the behaviour of the p-values.

Among the other methods, the standard regression has the best estimates of y. This is to be
expected, as the standard regression is the maximum likelihood method for the case in which
the true phylogeny belongs to the class generated by p-distortion of the working phylogeny. In
table 2, the nested method has very similar root mean square errors. The nested method loses
information compared with the standard regression because it ignores the genus means; on the
other hand it gains because it does not have to estimate p. These two effects seem to cancel each
other out roughly. The species regression is worse than these. As it uses the wrong
variance—covariance matrix, it should be worse. And indeed, the difference between the
standard and species regressions is much stronger when p is higher and so there is a greater
discrepancy between their variance—covariance matrices. The genus mean method is worst of
all, reflecting the fact that it throws away most of the information.

It is important to realize that these root mean square errors are measured in the repeated
trials of the simulations, and are not the standard errors which the various regression methods
would claim to have according to the standard formulae. Where the tables show a method to
be invalid, this implies that the actual standard error will exceed the claimed error. It is
therefore not true that by adopting the species regression, for example, one is simply obtaining
a less precise estimate of y. The precision of the estimate of y claimed by the species regression
will be hopelessly optimistic.

The conclusion from this comparison of root mean square errors is that if an estimate is
desired, it is best to use the estimate of the standard regression. Of course, the standard error
claimed by the standard regression cannot be trusted, and hypothesis testing must still be
carried out with the phylogenetic regression.

(e) Discussion

The first point for discussion is why the phylogenetic regression is only approximately valid.
What factors influence the approximation? There are at least four. It is most convenient to
discuss these factors in terms of the short regression.

The F-distribution of the F-ratio from the short regression depends on the error’s being
normally distributed. This is true when the working phylogeny is the true phylogeny, as the
sum of normals is normal. However, in each simulation trial, there is a random choice of binary
phylogeny, and then normal errors are constructed for that phylogeny. The result of the
double-stage randomization is that the error is a superposition of normals. It follows that the
error is not itself normal. This cause of approximate validity is not a major cause for concern,
as the assumption of normality is probably hardly ever met in applications anyway. However,
it may cause a degree of invalidity in the test.

The second reason for invalidity concerns the averages of species values used in constructing
the mean values for higher nodes, as illustrated in figure 4. These are weighted averages, and
the independence of radiations which are nested depends on those weights being the right
weights. They will be right if the variance-covariance matrix of the standard regression is
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exactly right for the double stage randomization of the stimulation test. However, the ‘true’
variance—covariance matrix will not in general be contained in the family of p-distortions of the
working phylogeny. This is because the true variance—covariance matrix is the average of the
variance-covariance matrices of the random compatible refinements selected in the
first random step of the simulation. The estimation of p will seek out the closest member of the
family, and it seems likely that the closest member will be fairly close, but there is no reason
to expect this average to be a member of the family of p-distortions. This means that the
standard regression contains a mis-specification for the data-creating process of the simulation.
This is an additional reason for inexactitude of the phylogenetic regression.

The third reason is involved, but is connected to the most crucial aspect of the superiority of
the phylogenetic over the standard regression. In both simulations, Z as well as € was randomly
created. The reason is that to create similarity due to unrecognized phylogeny between Z and
y it was not possible to have Z fixed in all the trials of a simulation. The similarity due to
unrecognized phylogeny had to be represented by having Z as a random variable. If the working
phylogeny was the true phylogeny, this would be irrelevant. The distribution of € would be
- independent of the distribution of Z, and so the normal theory would apply. In the simulations,
on the other hand, the distribution of € is not independent of the distribution of Z. If two of the
ten species in an unsubdivided genus have very different values of Z, then it is likely they are
distant in the current trial’s binary phylogeny, and so the values of ¢ are likely to be different
too. If two species have very similar values of Z, it is likely that the current trial’s binary
phylogeny has placed them close together, and so the values of ¢ will be similar too. This
problem works through to the short regression, creating non-independence between the
y-variable and the test variable under the null hypothesis.

A fourth, general, reason is that the method makes only an approximate allowance for the
effect of the uncertainty in the estimate of p namely, the reduction by one in the denominator
degrees of freedom. I am grateful to Professor P. Armitage for pointing this out to me. In each
trial of the simulation, p is re-estimated, and so the simulations do take this into account.

These four causes are responsible to unknown degrees for deviations from strict validity of the
phylogenetic regression. None is easily fixed, or naturally avoidable. The approach I have
taken is to assess how well the method works with these imperfections. At least in the examples
studied, no serious damage is done.

Additional simulations not reported here were conducted in which the working phylogeny
was taken as the true phylogeny, and p was taken as fixed and known. These confirmed the
analytical results of §10 that the standard and phylogenetic regressions are exact tests in this
situation.

Conclusions can also be drawn about the other methods. Unrecognized phylogeny is very
important. The standard regression, which is a maximum likelihood method and therefore has
various optimality properties when there is no unrecognized phylogeny, performs very poorly
in the simulations. Moving to higher-level means, to eliminate undeserved multiplicity of data
points, helps against recognized but not against unrecognized phylogeny. This move,
represented in the simulations by the genus means method, is the basic philosophy of the
‘higher taxonomic level methods’ reviewed by Pagel & Harvey (1989). Nested analyses,
represented in the simulations by the nested species within genus method, have the same
pattern of success and failure. The nesting technique is the basis of the ‘nested analysis of
covariance methods’ reviewed by Pagel & Harvey (1989).

Many more simulations could have been performed to explore the behaviour of the
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phylogenetic regression. One minor reason why more are not shown is that the simulations are
computationally onerous. The main reason, however, is that no other method I know of
provides serious competition for the phylogenetic regression. It is clear from its derivation that
it is likely to be superior to any method that does not cope with unrecognized phylogeny. If
another serious method were proposed, then more substantial simulations would be necessary
to decide between the rivals.

The chief reason to trust the phylogenetic regression is the combination of the analytical
results of § 10, showing that it is exact for a known phylogeny, and its application of the radiation
principle. The simulations are important extra support, but are not the mainstay of the case
for the phylogenetic regression.

(f) Conclusions on the basis of the simulations

The conclusions I draw from the simulations are that the phylogenetic regression is by far
the best of the methods tested, and that it is good enough to be worth using. Section 8 considers
how easy it is to apply the method..

6. THE ARBITRARY CHOIGE OF PATH-SEGMENT LENGTHS

This section discusses what attitude should be taken on biological grounds to the arbitrary
choice that needs to made in the phylogenetic regression about the path-segment lengths in the
phylogenetic tree. Section 6 (a) develops a view of what is meant by error in a comparative
study, and draws conclusions contrasting with those of Felsenstein (1985, 1988) about what
assumptions it is reasonable to make about it; §6 (5) discusses degrees of flexibility that are and
might be allowed in path-segment lengths in the phylogenetic regression. Finally, §6 (¢) sums
up on this arbitrary choice, arguing that it is an unavoidable feature of any method that does
the same job as the phylogenetic regression, and that a strictly analogous arbitrary choice is
made in all regressions and analyses of variance on non-experimental data.

(a) A model of the error

Various reasons have been suggested for why phylogenetically closer species should be more
similar, such as ‘ phylogenetic inertia’ (Wilson 1975). This complex nexus of ideas will not be
reviewed here. Instead I will suggest what seems to me to be the natural explanation of why
phylogenetically close species tend to be similar. It is so natural that it cannot be original with
me, but I do not know where it has been suggested before.

Suppose that speciation and extinction are driven by niche creation and destruction. When
a niche is created, it is likely to be filled by speciation from a species in a similar niche. Such
a species can survive better initially in the vacant niche, and evolve sooner to exploit it fully,
than a species in a more distant niche. This implies that similar niches will tend to be occupied
by phylogenetically close species. The reason for the similarity of the two species after
speciation, and full adaptation to the new niche, is that the niches are very similar.

On this view, species are perfectly adapted to their current niche, while at the same time
phylogenetically closer species are more similar. No mysterious forces are invoked. It implies
that phylogenetically close species should be similar in all sorts of ways, many more than our
statistical analysis will deal with at once. We usually study only a few aspects of a niche at a
time.

The important implication of this view is that the cross-species pattern in one character can be

13 Vol. 326. B
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understood as an adaptive response to the niche and to other characters. It is not necessary to
know about ancestral states, or about how fast evolution of the character has occurred. The
current state of a species and its niche is sufficient to explain its value of a given character. To
be sure, the distribution of species in the multi-dimensional space of all characters has a
phylogenetic pattern which does require historical elements in its explanation, and this
explanation is a worthwhile exercise. But it does not interfere with an ahistorical approach to
the explanation of the distribution of one set of characters conditional on the distributions of
other characters and on properties of niches.

There are other supposed problems for comparative methods, such as the existence of
multiple peaks, and characters being modified in different directions in different taxa by the
same selective force. These general philosophical problems are relevant to Ridley’s method and
mine in exactly the same way, and the stalwart defence of his comparative method (Ridley
1983, pp. 28-34) applies equally to mine.

The adaptive explanation of phylogenetic similarity suggests the following model for a given
character. Suppose that if the full truth were known about a character y, it would turn out that
the following relationship existed between y and a number of x-variables, x, to x;,,:

y= xl/’)l+x2ﬂ2+x3ﬁ3+x4ﬂ4+x5ﬁ5+ cor F %100 Br00- (1)

When a biologist studies y, theories will suggest that some variables are important, say x, to x,,,
but it is likely that only a subset of these have been measured, say x, to x,. The statistical model
that the biologist would fit in a linear regression would therefore be

Y =, B+ %, Byt x3 B3 +e,

where ¢ represents the error from the biologist’s model. But with our advantage of knowing the
‘truth, we know that ¢ is, by subtraction,

€ = x By + x5 B3+ % B + %7 By + %5 Bs - .. + X100 Pr00-

This formula is useful when we wish to know what assumptions it is reasonable to make about
the errors in the regression model. The error is equal to a weighted sum of characters. If most
characters are phylogenetically distributed, then so will the error be in the regression. This
conclusion is independent of the reasons why characters are phylogenetically distributed. Thus
the model is suggested by the adaptive account of phylogenetic similarities, but does not
logically depend on it.

This view of the error as arising from relevant omitted variables is not specially applicable
to comparative data, but is probably appropriate more widely. An alternative view is that the
error arises from measurement error, which is not a character that a biologist wishes to
investigate, and will not show regularities from study to study. From the statistical point of
view, error includes all reasons why data points do not lie exactly on the fitted line, and so
omitted variables and measurement error will both contribute to error (as will mis-specification
of the deterministic part of the model). In ignoring measurement error in what follows, I am
exploring the possibility that measurement error is small compared to the effects of omitted
variables. It is interesting to note that the identities and methods of research workers, which
must introduce error (in the extended sense) into comparative data, are also likely to be
phylogenetically distributed.

The method used to represent the correlations of the errors in the phylogenetic regression is


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

THE PHYLOGENETIC REGRESSION 145

the path segment length method of Felsenstein (1985), which he based on a Brownian motion
model. On a tree, any set of lengths will give phylogeny-like similarities, so how are those
lengths to be chosen? This is the central problem of this section. Felsenstein (1985) suggested
that dates of the splits should be used, and so lengths on the tree would be proportional to the
intervals between splits. The error in the character is supposed to be evolving by random drift.
Accordingly, Felsenstein also suggested that if evidence on differential speeds of evolution was
available, for example from pseudogenes, then that should also be incorporated into the tree.

The approach I shall take is different. The variances and covariances are wanted to
represent the error in a statistical analysis. The view of the error espoused here is that it results
from important but omitted variables. There is therefore no reason to expect the rate of random
drift to be relevant. On Felsenstein’s view, the same lengths should be used for every character
analysed in the same set of species. On my view, it is perfectly possible that different characters
should have different sets of lengths. It is also possible (indeed almost necessary) that as one
character is better understood, and more relevant characters are included as x-variables, the
appropriate lengths should change.

On my view, then, the arbitrariness of the path segment lengths is an intrinsic part of the
logical position in which we find ourselves in drawing inferences from phylogenetic data, and
would not be removed even if we knew all the dates of splits and rates of neutral gene evolution
between all the splits. Section 6¢ discusses what attitude should be taken to this arbitrariness.

One main way in which sets of path-segment lengths can vary is the extent to which
variation is placed close to the species level, making species more or less independent, or placed
close to the top of the tree, making the higher taxonomic levels quite distinct from each other.
This decision is very important, and it would be unsatisfactory to have to choose one fixed set
of lengths. The family of trees used in the phylogenetic regression, parametrized by p, allows
flexibility in this direction.

(b) Futting parameters of the tree

The precise pattern of variances and covariances between species is beyond our reach. There
are more path-segment lengths than there are species, so it is impossible to estimate the lengths
from the data. The best that can be done is to provide a family of trees which provides flexibility
in the most important directions, and let the data choose among the members of the family.
The high principle of the randomization test has trickled away into pleas to reasonableness now
that weights are being discussed. The phylogenetic regression is just like most other statistical
methods for non-experimental data in-this respect.

Choice among members of the family is performed by maximum likelihood. The relevant
formula is :

1  EP(=hy— XB)TV (y— XB))
V/ (det (2na?V)) ’

where ‘lik’ means likelihood, and ‘det’ means determinant. This formulation subsumes p into
V; B and the parameters of V are fitted simultaneously by maximizing the likelihood in the
standard regression.

‘The parametrization of the variances and covariances is now discussed. There are two
parameters, o and p. o® as usual simply scales all the variances and covariances in the tree.
p distorts the tree in the way described in §24. To recap, V is defined by

Vij = (1 '-/lfj),

13-2
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where £y is the height in the working phylogeny at which the paths from the root to i and j
diverge.

In an example the adequacy of the parametrization of V can be checked against any stated
alternative. The residuals in the short regression should be normally distributed with equal
variance. Each residual corresponds to a higher node in the phylogeny. The absolute value of
the residuals could be plotted against height of the corresponding node, to see if the stretching
imposed by p has approximately the right relative strength at different heights in the tree. The
residuals could also be inspected for phylogenetic patterns; it might turn out that some taxa
have larger residuals than others, suggesting that the path-segment lengths might with
advantage be increased in one portion of the tree. Of course overinterpretation of residuals is
to be avoided, and only strong patterns are likely to be worth following up.

It is possible, though I have come across no real examples (in an admittedly small sample),
for the fitted value of p to be zero, so that path segments with a species at their lower end have
a length of one, and all other path segments have zero length. The variability imputed to the
deviation of daughter means from their parent node’s mean would not then be zero because
sampling variation is passed up the tree. So the fitted value of p will be zero when the variation
found between higher nodes is equal to or less than what would be expected from sampling
variation alone. Equality would be consistent with the absence of phylogenetic effects, and the
independence of species. It is imaginable that there could be less variability than sampling
would lead us to expect. This could arise in body size if different genera within a family occupied
different kinds of niche, defined by diet type, and each genus contained a whole range of species
of different sizes. Then each genus could have approximately the same mean but contain a
great deal of variation. This hypothetical possibility would cause some problems for the
method. One simple ad hoc solution would be to omit the sampling variation from the
variability imputed by the method to the means of higher nodes. I stress that no examples are
known to me of this situation. It is the kind of thing that careless over-parametrization of V
could easily bring about.

The estimate of p has very poor statistical properties. I believe that it is asymptotically biased
and that its sampling variance does not decrease to zero asymptotically. The reason for bias is
that the estimate of p fulfils the extra function of representing in the working phylogeny the
positive correlations introduced between daughters by the random choice of compatible
refinement. This force will place more weight higher in the tree, and so the estimate of p will
be higher than it should be. The question of sampling variance depends on how sample size is
increased ‘asymptotically’, and in particular on whether the number of daughters per higher
node goes to infinity or not. If it does, then it seems likely that the sampling variance of p will
indeed go to zero. But this is an irrelevant way of increasing sample size asymptotically. It is
much more reasonable to assume that the number of daughters per higher node remains finite.

. In this case there will always be a finite weight attached to the finite number of daughters of the
top node, if the method of figure 2 is used to create path-segment lengths. This will maintain
a finite sampling variance for p even as the number of species increases indefinitely.

The poor statistical properties of the estimate of p are not of direct concern, as p is essentially
a nuisance parameter. But it is important to realize that caution should be taken if the estimate
of p is interpreted in any way. The poor behaviour of the estimate may prevent the standard
and phylogenetic regressions, when p has to be estimated, from being efficient for the
parameters which are of interest. However, the uncertainty of the form of the tree is part of the
nature of the problem, and is not introduced by the method of analysis.
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The parametrization of V is an area of the phylogenetic regression which experience may
alter. The different ways of forming the basic tree, and whether sampling errors should be
passed back up the tree, are all matters with no truly principled solution. These problems are
not, however, special difficulties with the phylogenetic regression; they reflect general
difficulties with making inferences from comparative data.

(¢) Summing up

The arbitrary choice of path-segment lengths represents a limitation on the certainty of the
conclusions that can be drawn from the phylogenetic regression. The purpose of this section is
to argue that this limitation is imposed by fundamental uncertainties in drawing conclusions
from comparative data, and is not unnecessarily introduced by the phylogenetic regression. The
limitations can be avoided only for statistical analyses of a very special kind.

In choosing path-segment lengths we are choosing how to weigh up evidence from different
parts of the phylogenetic tree. Is the positive relationship between y and Z found within a genus
in one part of the tree stronger or weaker evidence than the positive relationship found within
a family in some other part? Are they, taken together, enough to counterbalance the negative
relationship found within the whole order? On the view of the error expounded in §64, these
questions are strictly unanswerable. We would need to know about the omitted but relevant
variables.

But these questions have a strong parallel in regressions that biologists do routinely. When
performing a regression on non-experimental data, it is necessary to choose how to weight the
data points against each other. This choice is expressed in the choice of weights in a weighted
regression. In the absence of a way to choose these weights, it is usual to perform an unweighted
regression without any consciousness of having made an arbitrary choice. The logical position
of choosing path-segment lengths is the same as that of choosing weights. Most statistical
methods for non-experimental data rely unavoidably on underlying assumptions about the
covariance structure, which have to be made arbitrarily.

The pragmatic approach is to choose a ‘reasonable’ set of weights, and perform the
regression. Someone who challenges the weights can always repeat the analysis with another set
of weights to see if it makes a difference to the results. If two ‘reasonable’ sets of weights give
very different results, then it is genuinely doubtful what inferences should be drawn from the
data. This pragmatic approach is essential to very many analyses in many areas of application
of statistics, and is adopted here for the phylogenetic regression.

This contrasts with Felsenstein’s (1985, 1988) counsel of perfection (and despair!) that the
tree must be known before sensible statistics can be done on comparative data. The time
intervals between splits are needed, he argues, before the covariance structure can be known.
The pragmatic approach suggests that, even with an unknown covariance structure, it is
reasonable to do statistics. More fundamentally, the view of error developed in §64, based on
relevant but omitted variables, suggests that the time intervals between splits do not in
principle supply the true covariance structure. (More fundamentally still, I doubt that there
is a true covariance structure except as a formal convenience in the mind of the theoretical
statistician. It is part of mathematical technique, not a truth about the world.)

Some kinds of analysis can be done that avoid the arbitrary choice, but they must omit data.
A data point cannot be used twice, once in its own right, and again as part of an average. For
example, once the species within a genus had been used, the genus mean could not then be used
for a higher-level contrast. An ingenious method of obtaining more non-overlapping contrasts
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than might be thought possible is described by Felsenstein (1988, p. 457). Over and above this,
there are strong restrictions on the kinds of test that can be performed on these contrasts
without relying on weighting the evidence : for example, they must at least be non-parametric.
A'rank correlation will not be valid, because it will not be true that the contrasts on one
variable are independent of the contrasts on the other. More distant contrasts will have a more
dispersed distribution for all variables. Tests will have to be based on just the sign of the
difference in a variable, leading to a sign test or 2" contingency table test.

The conclusions, then, are that there are uncertainties involved in drawing inferences from
comparative data which no general statistical method can avoid. The arbitrary choices of path-
segment length reflect these uncertainties, and not additional uncertainties introduced by the
techniques employed in the phylogenetic regression. Biologists are, rightly, going to continue
to look at comparative data sets and draw inferences in the absence of knowledge of true
phylogenies. They deserve a statistical method that helps them as fully as possible in the
rational assessment of that evidence.

7. DiscussioN

The non-historical nature of the logic underlying the phylogenetic regression is discussed in
§7a. The advantages of the phylogenetic regression are summarized in §7b.

(@) Reconstruction of ancestors or conditioning on pattern?

The logic of the phylogenetic regression has no truck with history. Ancestral states are not
inferred, and fossils would not take priority in directing inferences. That the reconstruction of
ancestral states is not merely hidden in the algebra of the phylogenetic regression may be seen
from the following example. Consider the phylogeny and evolution of a character depicted in
figure 10. The original species divides into two, then into four, then into eight. During recent
times, the eight species have all changed dramatically in the value of the character, so that all
eight species have values outside the range of all earlier forms. Now imagine a biologist-who
does not know the history of the group applying a statistical analysis to the modern species. If

time

trait

Ficure 10. This figure illustrates a trait that changes in time so dramatically that extant species lie entirely outside
the range of their common ancestors, yet retains a phylogenetic pattern in which more closely related species
are more similar to each other than distantly related species.
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the logic of the method requires the reconstruction of ancestral states, then we, with our extra
information, know that the biologist’s method will fail and will not believe his conclusions. My
case is that the logic of the phylogenetic regression is still perfectly sound in such a situation,
and our extra information would not lead us to doubt the biologist’s conclusions. Or, putting
ourselves in the position of the biologist, we do not rely on the assumption that ancestral states
are averages of extant species’ states.

How can this case be justified? The answer lies in my model of a character, expression (1)
from §64a, which in- this case we can write with only four x-variables as

Y = x; Byt %5 Byt x5 B3+ x4 By

The logic of the method derives from the supposition that the omitted but relevant characters
are phylogenetically distributed, not on any reconstruction of ancestral states. In particular,
suppose that x, in the above formula has changed in all members of a group, perhaps because
of some environmental change. The y-values of all species in the group will be changed,
dramatically if f, is large. This does not alter the relationship between x,, x,,x; and y. The
extent of this change due to £, does not alter how these relationships should be studied
statistically ; y will still be distributed phylogenetically if x,, x,, ¥; and x, are.

It will be seen that the justification for the phylogenetic regression then rests on the
distribution among modern species of all the characters that determine y. Provided they are
distributed phylogenetically, then the method is appropriate. Nothing need be assumed, or is
tacitly asserted, about ancestral states. The change in x, may even have moved all modern
species’ y values outside the range of all ancestral species, as illustrated in figure 10.

(b) Conclusions

The phylogenetic regression has passed its tests well. It applies to comparative data with a
continuous y-variable, and has the following satisfactory features.

(i) It uses all the data.

(i) It provides the hypothesis-testing facilities of multiple regression, treating categorical
variables and continuous variables, and allowing arbitrary numbers of variables to be
controlled for and tested for. It handles interactions routinely.

(iii) It works with an arbitrary phylogeny. Further, it behaves correctly with a binary
phylogeny, when it is equivalent to the standard regression; and with a null phylogeny (all
species are daughters of the same higher node) when there are no degrees of freedom in the test.

(iv) It has been shown to be (approximately) valid, analytically and by simulation, in the
face of similarity caused by both recognized and unrecognized phylogeny.

With these advantages, the phylogenetic regression will be the only available and acceptable
method for many problems, and the best of the available methods for many more. The
phylogenetic regression is the natural hypothesis-testing regression method for comparative
data.

8. How THE PHYLOGENETIC REGRESSION CAN BE IMPLEMENTED

I have written a GLIM program that implements the phylogenetic regression, which is now
in widespread use in the Zoology Department of Oxford University. Copies of the program are
available free from me. The program is small (approximately 30 K) and requests should be sent
in writing and accompanied by a formatted Macintosh floppy disc. GLIM (Generalized Linear
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Interactive Modelling system) is available from NAG Ltd, Wilkinson House, Jordan Hill
Road, Oxford OX2 8DR, U.K. GLIM runs on many micros (including Macintosh and IBM
PC), and on most mainframes. The user interface is virtually uniform, and programs written
on one machine run without alteration on others. The program is accompanied by
documentation.

An analysis with 56 species and 42 higher nodes in the working phylogeny, in which one
continuous variable is controlled for and one is tested for, takes under seven seconds of CPU time
on a VAX 8700. The program’s output includes the F-ratio of the test, parameter estimates
from the standard regression, and a plot which shows the influence of individual radiations in
the analysis. Continuous and categorical variables can be controlled for and tested for; p is
automatically fitted by maximum likelihood. When complications arise from the loss of degrees
of freedom described in §3e, they are correctly dealt with.

I am most grateful to Mark Ridley for his example and help. He has made useful comments
on a number of previous drafts of this paper. Michael Bulmer made useful suggestions about
the simulations and insisted that I include the estimation of p in the phylogenetic regression.
He also listened patiently to informal and consequently incomprehensible accounts of the
results that can now be found in §10 and suggested major improvements to the organization
of the paper. Olof Leimar pointed out a notational error in the Appendix. Paul Harvey, Tim
Guilford and Austin Burt commented on earlier versions of the paper. Mark Ridley, Sue Healy
and Tim Guilford allowed me to practice using my GLIM program on their data sets. Mark
Pagel and Paul Harvey allowed me 51ght of a manuscript of their paper which is currently in
the press. Oxford University Computing Service provided computing facilities. I am supported
by a Royal Society 1983 University Research Fellowship.
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10. APPENDIX
(a) Preliminary remarks

The purpose of this appendix is to state results of importance to the phylogenetic regression.
The mathematics done is all quite simple, but to express it economically it has been necessary
to adopt a rather formal approach. A major notational problem is the formal treatment of an
arbitrary phylogeny. In these preliminary remarks, the meaning and relevance of the four
theorems is discussed. Throughout the Appendix, formal remarks are made to explain the
direction of the developing argument. In many cases the actual objects of interest are not
mentioned in the mathematics at all. These objects are statistical tests. The first is the standard
regression. The variables involved are a y-variable y, a set of x-variables X to be controlled for,
and a set of x-variables Z to be tested for. The regression is defined by

E(y) =lu+Xp+Zy (y—Xp—Zy) cN(O, V),
where 1, is the constant term, V is defined by

Viy(o) = (1=,

and A is the height in the initial working phylogeny at which the paths to species i and j
diverge. The symbol oc is used to mean that the variance—covariance matrix of the error is
assumed only to be proportional to V, not necessarily equal to it. For the purpose of this
appendix the path-segment lengths are fixed, so that p is considered known.

The first theorem states that the standard regression is equivalent to the long regression,
defined by p1y) = S8+ LXB+LZy (Ly—S6—LXB—LZy) oc N(0,C),
in which L, § and C are matrices defined formally later. The two regressions are shown to be
equivalent in the sense that the residual sum of squares of the long regression, concentrated for
p and 4, is the same function of y, Z and 7y as the residual sum of squares of the standard
regression concentrated for # and . This shows that the significance tests for y = 0, controlling
for 1, and X in the case of the standard regression and for LX and S in the case of the long
regression, will yield the same test statistic with the same distribution. Each data point in the
long regression represents the deviation of a node’s value from its parent node’s value. The data
in this form is suitable for defining the randomization test explained in §3¢. It is important
that C is a diagonal matrix, so that this theorem allows the standard regression to be fitted by
a package that cannot handle non-diagonal variance-covariance matrices. GLIM is such a
package. The reason it is necessary to prove this first theorem is to show that the formulae for
L and C are correct; their forms are far from obvious a priori. L represents the process of
‘hanging on the tree’ described in §3a.

The second and third theorems concern the short regression, defined. by

E(GC'Ly) = GC'LXB+GC'LZy (GC'L(y—XB—Zy)) oc N(0, ).

The distribution of (GCL(y — XB— Zy)) is understood as a distribution conditional on G, as G
is a random matrix because it depends on the value of y. The second theorem states that the
process of performing the long regression, defining the random linear contrasts GC™' and
forming the elements of the short regression does indeed result in the same, standard, statistical
test as the short regression. This is shown by proving that conditional on G, the residual in the

14 Vol. 326. B
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short regression after regression of GC 'Ly on GC™LX has the same probability density whether
the randomness arises through €, the error in the standard regression, as transmuted by
construction of G and the formation of the short regression; or whether the randomness is
assumed to arise as a N(0, I) variable in the short regression itself. The first reason it is necessary
to prove this theorem is to show that the formula for G is correct. The second reason is that Gis a
random matrix, as it depends on €. In general, using contrasts G that depend on € will violate
the standard formulae for the variances and covariances of the contrasts, which rely on fixed
G. As was seen in the simulations in §5, the short regression has high mean square error in its
parameter estimate under the null hypothesis, and has biased estimates under the alternative
hypothesis. It is therefore not at all obvious that the short regression will be valid but, as the
theorem shows, it is.

The third theorem states that the short regression is equivalent to the long regression with T,
defined by

E(Ly) = S8+ LXp+ Tr+LZy (Ly—S8—LXB— TO—LZy) o« N(0,C).

T'is a matrix representing a set of artificial variables added to the long regression to ensure that
no matter what value Z may take, the residuals after regression on S, LX, T and LZ will remain
proportional, within each radiation separately, to the residuals after regression on § and LX
alone. T therefore depends on y, and like G is a random matrix. Equivalence means that the
residual sum of squares for the long regression with T, concentrated for §, § and 6, is the same
function of y, Z and vy as the residual sum of squares of the short regression concentrated for
B. The theorem is proved to show that the phylogenetic regression can be interpreted as
conditioning within the standard regression on the patterns of the residual in each radiation,
in the sense of ‘pattern’ explained in §3c¢.

The fourth theorem shows that the randomization test, explained in §3¢ and defined
formally below, is equivalent to the short regression in the sense that the null distribution of the
test statistic of the randomization test is also an F-distribution with the required degrees of
freedom.

As well as these four results, the mathematical development defines the matrices used to
construct the long and short regressions, and so formally defines the phylogenetic regression.

The proofs of the theorems have been omitted, but have been lodged in the archives of the
Royal Society.

(b) Definitions and theorems

A preliminary note on matrix notation. I shall define matrices as 4 X B, where 4 and B are finite
sets, rather than as m X n, where m and n are integers. An 4 X B matrix D will have elements
D,,, where ae 4 and b€ B. Where a matrix is defined as m X n or 4 X n, the integers m and n
should be understood as shorthand for the sets {1,2...m} and {1,2...n}. The advantage of this
notation is that if 4" and B’ are subsets of 4 and B, respectively, then a submatrix D’ can be
concisely defined as the A" x B’ submatrix of D. v

Definition of I, IT,, I1,, IT, IT,, I1 . These definitions are made with respect to the working
phylogeny. Let II be the set of all nodes, 1T, the set of species nodes, IT, the set of higher (i.e.
non-species) nodes and II the set of all nodes except the root. Let IT,, i€ I, be the set of species
nodes which are descendants of (or equal to) node i. Let I, i€ IT, , be the set of daughter nodes

of node i. Associate each node with a distinct integer, to establish an arbitrary ordering over
1.
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Defimition of P, P,. Let P denote the partition {IIy},.;, of 11, and let P,, i€ IT, denote the
partition {/Ij};.; of II,.

Definition of n, n,, ng, n,. Let n be the number of nodes in the working phylogeny, n, be the
number of species nodes, n, be n—1, and n, be the number of higher nodes. Note that every
species is either a species node or a higher node but not both, so that n, +n, = n. It follows that
ng—n, =n,—1.

Definition of . Let i’ € IT, denote the parent node of i, i€ IT.

Definition of ky, hy. Let k; be arbitrary non-negative real numbers representing the length of the
path segment between i and i’, ie I, with «; > 0 if i€ II,. Let , be the summed length of the
path segments between the root and i, i€ I1.

Definition of a(i,j). Let (i, j) be the lowest common ancestor of i and j,i,j€ I1.

Remark. The h; just defined are related to the 4 used in the body of the paper by the
relationship 4, ;, = 1 —Af;. The working phylogeny as used in the Appendix is taken as having
already undergone transformation by p.

Definition of ,, 2, ,,, 2. Let Q, be the set of column vectors with real elements indexed
by IT,, and let Q,;, i€ IT, be the subspace of 2, with only those elements indexed by IT;. Let Q,
be the set of column vectors with real elements indexed by I, and let Q,, i€ IT,, be the
subspace of €, with only those elements indexed by I1;.

Remark. The definitions of the various IT allow means at higher nodes to be dealt with in the
same way as species values. £, and £, are the data spaces of the standard and long regressions,
respectively.

Definition of 1, I;, 1. Let 1,€Q,;, ie I, be the vector each of whose elements equals one.
Let I,; be the identity matrix over £,;. Let 1,,€ Q; be the vector each of whose elements equals
one.

Definition of U,. Let U,, i€ Il be the II, x I, matrix defined by
Up=1 j=k
0 j#k
Remark. U, is a matrix which picks out from a vector x€£2, those elements indexed by
elements of IT,. (U, x) € 2,, and equals x over those elements held in common. U transforms

a vector x€£2, into a vector which is an element of £,, equals x in those elements indexed in
common, and equals zero elsewhere.

Definition of V. Let V be the II, x II, matrix defined by
Vi = hyyy» for ijell,.

Extension of subscript notation for V. As an extension of the usual subscript notation, let V}; also
be defined when i and j are not necessarily species nodes, as the IT, x II; submatrix of V.
Further, let V; denote V;,.

Definition of o?. Let o = (1TV;'1,)7Y, iell.

14-2
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Remark. o? is the sampling variance of the mean of all the species below node i, of a variable
whose variance—covariance matrix is V.

Definition of f;. Let f,€Q,, i€ I, be defined by f, = U V{'1,(1F V1)L
Definition of L, L;,, W and K. Let L be a II, x II, matrix whose ith row is denoted by L;, and

defined by L= [~/
i~ Wi T J

and let W be a IT, x II, matrix defined by W = LVL". Let K be a II, x II, matrix defined by

K;=1 a(i,j) =]
0 o.w.

Remark. L is the matrix of linear contrasts which transforms the variables of the standard
regression into the corresponding variables of the long regression; f; is a vector which maps (by
taking the inner product) a vector of species values into the mean value for species below node
i. So _fi—f; produces the deviation of the mean of the species below node i from the mean of
the species below the parent of node i. If the variance—covariance matrix of a random vector x
is V, then that of Lx is W. K is a matrix with a row for every species, and a column for every
node except the root. An element equal to 1 indicates that the column-node is an ancestor of
(or is equal to) the row-node.

Notational convention of bracketed subscripts. Any array dimension indexed by II; can also be
considered to be indexed by IT,, according to the partition P of II,. It is convenient to be able
to use both forms of indexing explicitly. Accordingly unbracketed subscripts will refer in the
usual way to indexing by I1,, and bracketed subscripts will refer to the partitional indexing.
Thus W is a single element of the matrix W, defined for i, jeIl,. W, is a I1;; X 1 vector
defined for ie I, je IT,. W;, is the Il X I1;; submatrix of W, defined for i, je I1,.

Definition of C. Let C be a II, x IT, matrix defined by C = diagiens(of—hi,).

Definition of |. If A and B are two matrices with the same number of rows, then let 4| B denote
the matrix formed by juxtaposing the columns of 4 and B.

Definition-of M*, N*, M® N°. If A is a IT, X n, matrix of full rank, n, <n, then let M*, =
A(ATVTA) ' ATV, and let NY, = I,— M. If A is a T x n, matrix of full rank, n, < n,, then
let M = A(A"CA)™'A"C™, and let Ny = I,— M. In each case, rk(M,) = rk(4). In each
case, if 4 is a null matrix, then let M, =0, and N, = I.

Remark. The M and N are orthogonal projection matrices in the £ space indicated by their
superscript. M projects onto the columns of the subscripted matrix; N projects onto the space
orthogonal to them. Orthogonality in €, is taken with respect to V™%, and in €, is taken with
respect to C'. The principal properties of projection matrices, which will be used without
comment, are thatM;“BA =A,and N,z A=0; that M,M,=M,, NyN,= N,and M, N,
= 0; that if the columns of 4 and B span the same subspace, then M, = Mz and N, = Ng;
and that if the columns of A are orthogonal to the columns of B then M,B =0 and
N,B=B.
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Definition of S. Let S be a I, x IT; matrix defined by

Sy=1 iell,
0 i¢ll,

Equivalently, when considered as a II, X IT, matrix according to the partition P of I, S is
diagonal with S, = 1, ie IT,.

Remark. The following theorem says that the long regression, which has C as its
variance—covariance matrix, is equivalent to the standard regression. C is a diagonal matrix.
This allows GLIM, for example, to handle the standard regression, even though it does not
allow covariances among the errors. The LHS of the statement of the theorem is the residual
sum of squares in the standard regression, concentrated for the parameter vectors for 1, and X,
as a function of y, Z and y. The RHS is the residual sum of squares in the long regression,
concentrated for the parameter vectors of § and LX, as a function of y, Z and y. Before the
theorem we formally define the data of the analysis. Note that the null hypothesis is implicit
in the definition of y.

Definition of €, y, p, X, B, Z, ny, n,. Let € be a random variable over £,, distributed as
N(0, V). Let u be a scalar, X a II, X ny matrix of full rank which is linearly independent of 1,
p an ny x 1 vector, and Z a II, X n, matrix. Let y be a random variable defined by

y= w1 0[4] e

THEOREM 1. If 'y is an ny, X 1 vector, then
(y—2Zy)" Niyx" V' Niyx (y— Zy) = (Ly— LZy)" Ny 5" C™ Nyyis(Ly — LZy).
Definition of e, I, n,, £, I,, 7, A. Let ¢ be a random variable over £, defined by

g 7g

e= Ng.xLe.

Let IT, = {i|ie Il ¢, #0}. Let n, be the number of elements of /7. Let £2, be the set of column
vectors with real elements indexed by II,. Let I, be the identity matrix over £2,. Let j, = min
{jlie Iy, ¢, # 0}, ieIT,. Let 7 be a random variable over £ defined by

T 1 — 3
Tay Cegy ToyCanTw =1, 7,>0 iell,
Ty =0 i¢ll,.

For ie I,, the conditions define in turn the relative values of the elements of 7;,, the magnitude
of 7, and the sign of 7. Let A be a random variable over €2, defined by

s =N Ty, 1€Il,.

Remark. It is formally possible that IT, = {}, if all of the variability in y has been explained by
X. In what follows I shall tacitly assume that this is not the case. In practical terms, this
situation will be obvious because of a zero sum of squares in the standard regression, and in
theoretical terms it has no particular interest. There is no possibility of discovering if Z explains
variability in y from such a dataset.

Definition of M®, N¥. If A is a IT, x n, matrix of full rank, n, < n,, then let M% = A(A"4)7'4",
and let N4 = I,— M®. Note that rk(M,) = rk(A). In the case that 4 is a null matrix, let
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M =0, and N% = I,. M® and N® are orthogonal projection matrices over £, and orthog-
onality is taken with respect to I,.

Definition of G. Let G be a II, x IT; matrix defined by

Gy =T 1=]

0 i#j
Remark. e is the residual in the long regression after regression of y on X. I, is the set of higher
nodes at which these residuals are not identically zero. The circumstances in which some of the
residuals are identically zero is discussed in §3e. Usually, II, = II,. Q, is the data space of
the short regression, 7 is a vector containing the ‘pattern’ of the residuals, and A contains the
‘magnitudes’ in the sense of §3 (¢). G is a matrix which in combination with C will form the
linear contrasts GC* which transform the long regression into the short regression. GTGC™ is
a projection matrix. The short regression can therefore be seen as a projection of the long
regression onto the columns of G*. The ith column of G? has zero everywhere except in the
radiation of node i, and there it is proportional to ¢, the residuals in the long regression of y
on X. This projection ensures that all the residuals after regression on GC*LZ must lie in the

same space, and so must be proportional, within each radiation, to ¢,.

Definition of X®. Let X® be a II, x rk(GC™'LX) matrix defined such that the columns of X®
span the same subspace as those of GC'LX. X® may be a null matrix.

Remark. This definition is needed in case GC'LX is not of full rank even though LX is. See
§3(¢). X* = GC'LX will satisfy the definition when GC™'LX is of full rank.

Remark. The following theorem shows that the short regression is analytically valid in the case
where the working phylogeny is the true phylogeny, and p is known and taken as fixed at its
true value. It does this by giving the probability density of N%sGC 'Ly, the residual vector after
regression of GC™'Ly on GC'LX, based on the whole process of computing the long regression,
conditioning on 7, and using the random linear contrasts GC! to form the short regression. The
theorem shows that conditional on 7, the probability density is the same as it would have been
if GC'LX were taken as fixed, and the residual’s density calculated on the basis of an error ¥
distributed as N(0,I,) in the regression y® = GC'LXf+ ¥. This equivalence of the residual
density in the two cases establishes the exactness of the short regression for testing for the
addition of GC'LZ. Note that conditional on 7, GC*LZ is fixed and not random.

THEOREM 2. Conditional on T
NesGC Ly ~ N(0, N%s).

Definition of T, np. Let ny, = ns—nh%ng. Let T be a I, x n,, matrix of full rank which satisfies
T"C*(S|G") = 0, and rk(T|S|G") = n,. If n;—n, —n, = 0, then T will be a null matrix.

Remark. T will be null only when the working phylogeny is binary and as a consequence the
phylogenetic regression and the standard regression are the same.

Remark. The following theorem shows that the long regression with T is equivalent to the
short regression. The LHS is the sum of squares of the long regression, concentrated for the
parameter vectors associated with LX, § and 7. The RHS is the residual sum of squares of
the short regression, concentrated for the parameter vectors associated with GC'LX. The
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introduction of A allows for possible collinearity between T and LX, or in other words that
k(X®) < rk(LX).

THEOREM 3. Let A be a II,x rk(LX|S|T) matrix of full rank whose columns span the same
subspace of Q as the columns of (S|LX|T). Then conditional on T,

(Ly—LZy)" Ny"C' Ny (Ly—LZy)
= (GC” 1Ly—GC‘lLZ'y)"“N’f,‘,gTI; 'NE(GC'Ly— GC*LZy).
Definition of F. If ais a IT; X 1 vector, B is a II, X ng matrix of full rank, n < n,, Dis a IT, X n,,

matrix of full rank, ng+n;, < ny, rk(B| D) = rk(B) +k(D), and a” N%, ,a # 0, then let F(a, B, D)

equal
T T
a” M, pe a M pe

T =T — Taqg .
a Ngpe @ Nga—a" MY pe

Definition of Z°. Let Z° be a matrix of full rank formed by deleting columns from Z in such
a way that (X®|GC™'LZ®) is of full rank and that rk(X®|GCLZ°) = rk(X®*|GC*LZ). Z° may be

a null matrix.
Definition of my, m,. Let my = rk(X®), and m, = rk(Z°).

Definition of I'. Let I' be defined almost surely as a IT, x m, random matrix whose elements
are independently distributed in normal distributions, with zero mean, and
C—l

eX ¢
var ( T ) — ) 7d) “d)
" (e Cay (LZ°))*

This definition fails when the denominator is zero for any i,].
Definition of ¥. Let ¥ be a II, x m, random matrix defined almost surely by

Yoy =Ty(LL)yy; i€ll,j=1..m
O ieHh_Hg’j=l..mZ

Remark. ¥ is the random alternative to Z of the randomization test described in §3 (c).

Remark. The following theorem shows that the randomization test described in §3 (¢) is the
same test as the short regression. Formally, the randomization test is to find the p-value for the
null hypothesis that y = 0 by finding

Pr{F(GC'Ly, X*, GC'¥) > F(GC'Ly, X*, GC"*LZ°)},

in which the substitution of ¥ for LZ° is the only difference between the two sides of the
inequality. If this probability is low, it implies that randomly selected explanatory variables
would rarely explain as much of the remaining variation in Ly as LZ° does. The short
regression’s test statistic would also have an F-distribution with m, and n,—m, —m, degrees
of freedom.

THEOREM 4. Conditional on y, F(GC™* Ly, X®, GC'¥) has an F-disiribution with m, and ny,—my —m,
degrees of freedom.
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